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Motivation
• Propulsion systems for Nano and Pico-satellites

– 0.1 to 10 kg
– High energy density of chemical propellants is attractive
– Combustion well established means for energy release

• Behavior of deflagration wave may be different when 
stabilized in small passages 
– Increased exchange with structure

• Quenching
• Increased burning rate
• Enhanced flame stability

– Potentially important effects on performance of micro-
rocket motors
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Previous Work: Fundamental
• Quenching in small passages

– Zeldovich (1941)
– Lewis and Von Elbe (1961)

• Effect of heat loss on RR and flammability limits
– Spalding (1954)

• Heat loss decreases burning rate and broadens flammability limits

• Effect of heat recirculation (excess enthalpy burners)
– Weinberg (1970)
– Weinberg and Hardesty (1974)
– Takeno(1979,81)

• Constant T walls, single-step reaction
– General observations:

• Super-adiabatic flame temperatures
• Elevated burning rates
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Previous Work: Micro-Channels
• Burning rate and flammability measurements in conductive tubes

– Zamaschikov (1997)
• Combustion below ‘quenching limit’ possible

• Model of flame propagation in a narrow, conductive, channel
– Zamaschikov and Minaev (2001)

• Fast chemistry
• Conduction broadens flammability limits
• Hysteresis possible

• Minimum ‘practical’ volume for an HCCI combustor
– Aichlmayr (2002)

• Thermal coupling between gas and structure
• Full chemistry
• No conduction within structure

• Effect of velocity, heat loss, and passage width on burning rate in microchannel
– Matalon and Daou (2002)

• Constant T walls, single-step overall reaction
• Heat loss to environment decreases burning rate

• Effect of axial conduction in heat recirculating burner
– Ronney (2003)

• PSR with full chemistry
• Effect of axial conduction in silicon micro-combustor

– Current work: Effect of heat transfer within structure (conduction)
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Objective

• Investigate physics of fluid structure coupling that 
occurs in chemically reacting systems operating at 
micro-scales.
– Enable development of small, efficient combustors for 

micro rocket motors
– How small can practical micro-rockets be built?

• Efficient and stable combustion

– What level of performance is available?
• Thrust/weight (power density)
• Specific impulse (efficiency)



6/21/04 International Symposium on Energy Conversion Fundamentals, Istanbul

Approach

• Modeling and Simulation
– Simple model for effect of thermal coupling on δr

• Modification of Mallard-Le Chatelier approach

– Numerical simulation 
• 1-D geometry, Full chemistry, Conjugate heat transfer, Heat 

conduction in structure

• Experiments
– Develop novel non-intrusive diagnostic technique
– Investigate behavior in parallel plate flow reactor with 

conductive, temperature-controlled walls
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Analytical model
• Include thermal coupling with structure:

outq&inq&

gasq&
T0

Ti

δph

Pre-heat
δr

Reaction

condq&

T
Tf Structure provides 

another path for 
heat transfer

x



6/21/04 International Symposium on Energy Conversion Fundamentals, Istanbul

Analytical model

Rs

• Thermo-electrical analogy:
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Analytical model

• Flame thickness:

• Asymptotic behavior:
– Nu → 0 or H →∞: No thermal coupling

δr → δr,fr
– Nu →∞ or H → 0: Perfect thermal coupling
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Analytical model

• Solving for δr third order polynomial

Questions:
•Influence of Nu?
•Influence of ks?  
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                              Thin flame
    Limited by thermal conductivity of reactants
Recover value predicted by Mallard-Le Chatelier

                     Thick flame
δr limited by thermal conductivity of structure 
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Numerical Simulation

1cm

201 grid points
Unevenly spaced mesh

T0=300K
P=1atm
H2-air
Φ=0.5

1-D x

Gas-phase:
• Continuity
• Energy
• Species

Structure: Energy

Structure: Energyt

H
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Numerical Simulation

• Differences wrt. analytical model:
– Chemistry (9 species and 19 reactions)
– Include species diffusion
– Transient capability, but consider steady-state solution

• Assumptions:
– 1-D
– P=const
– Laminar, incompressible, inviscid
– Nu=const
– No thermal diffusion
– Fourier conduction and Fickian diffusion
– ζ ≡ As/Ar = 1
– Adiabatic and non-adiabatic operation
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Numerical Simulation

State

Mass

Energy (gas)

Species (gas)

Energy (structure)

 
RT

PWm=ρ

( )
dt
dT

Tdt
dY

W
W

dx
ud

k

k

k

m∑ +







=

ρρρ

( )
( ) ( )∑

∑
−−−














+















−=
k

kkhkW sTTThcha
dx
dT

rk
dx
d

dx
k

kYkhd

u
dt
dT

PC ωρρ &

kkW
dx

kdY
u

dx
kdY

kD
dx
d

dt
kdY

ωρρρ &+−







=

( ) ( )eTsTe,ThsasTTThsa
dx

sdT
sk

dx
d

dt
sdT

s,PCs −−−+















=ρ



6/21/04 International Symposium on Energy Conversion Fundamentals, Istanbul

Flame Thickness

• Estimate based on temperature change through the flame*
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* Law, C.K. and Sung, C.J., ‘Structure, Aerodynamics, and Geometry of Premixed Flamelets’, 
Progress in Energy and Combustion Science 26 (2000) 459-505 
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Effect of Nusselt Number
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• Increasing Nu causes broadening to occur at larger H
• Consistent with model predictions
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Effect of Thermal Conductivity
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• Increasing ks increases broadening effect 
• Consistent with model predictions
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Effect of Heat Loss
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• Heat loss reduces broadening and leads to quenching
• Consistent with model predictions
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Silicon Micro-Combustor

• Conduction also increases burning rate.
• Including ksi(T) is important
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Silicon Micro-Combustor

Definition of Power Density
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Note: In following plots, power density is non-dimensionalized by a 
‘reference’ value corresponding to combustion at the laminar flame 
speed SL in a volume of 1 cm3. 
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Silicon Micro-Combustor
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Silicon Micro-Combustor
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Silicon Micro-Combustor
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Silicon Micro-Combustor
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Silicon Micro-Combustor
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Silicon Micro-Rocket
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Silicon Micro-Rocket Isp
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Silicon Micro-Rocket Thrust/Weight
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Optimum Configuration
(Neglecting Pressure Loss)
• L=0.5 mm 
• H = 5 µm
• T=72x10-9 N
• T/W = 943

Practical Design Region?

• Maximum T/W corresponds to maximum power density
• Very high T/W may be possible
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Experiments
• Provide data to validate model and simulations

– Effect of Twall, kstructure on
• Burning rate
• Reaction zone thickness

• Approach
– Construct parallel plate reactor

• Conductive, temperature-controlled walls
• Re-configurable (0.5 mm < H < 10 mm)
• Build using conventional mfg. processes (avoid MEMS)

– Develop appropriate diagnostic techniques 
• Measure temperature and species concentration
• Sub-millimeter spatial resolution
• Non-intrusive
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Parallel Plate Reactor

Measure

Compute

Fuel (CH4,C3H8)
CO,CO2

Concentration

x

Efficiency,
Temperature

x

Efficiency

Temperature

Fuel + Air

FTIR interrogation Volume
(with mask)

h

Traverse

Thermocouples

Temperature Controlled Supports

•Controllable BC’s
•Detailed Measurements

•Temperature
•Heat Flux
•Species conc.

Features:

δrxn
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Parallel Plate Reactor

Contraction

Removable section :
permits study of developing

or fully developed flow

Plates

Substrate

SiC layerPassage height
500 microns – 5mm

Cooling passages

Water
Cartridge heaters

Passage width: 7 cm
Passage length: 12 cm
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Parallel Plate Reactor
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Oxidizer

Window : CaF2

FTIR optical path
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Data acquisition
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mid-flame (phi = 0.11)
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FTIR Proof of Concept

Silicon walled micro-burner

Traverse
Fourier Transform Infrared Spectrometer (FTIR)

Mask increases spatial resolution

C3H8+Air

FTIR beam
Si wafers

Plenum

~2mm

Interrogation volume
~4mm
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FTIR Proof-of-Concept

Mask

Si wafers

Traverse
FTIR collection optic

Plenum
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Silicon Micro-burner Operation

Split flame attached
to Si plates
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Sample Spectra

downstream (phi =0.11)
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Temperature Calculation from CO

1. Identify peaks
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Temperature Calculation from CO
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Axial Temperature Distribution
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Present Work

FTIR

Detector

Micro-BurnerExternal Optics

Thermocouple Support

Mask

• Improved Optics
– Better FTIR
– Higher throughput 

external beam path
• IR Camera for Plate T
• Improved spectral 

interpretation
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Present Work

• Improved burner
– Adjustable H
– Improved traverse
– Improved flow control

Mask

Plenum

Slit

Detector

Vertical Traverse

FTIR
Beam
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Conclusions
• Structural heat conduction has important effects on 

performance of micro-combustors
– Increases reaction zone thickness
– Increases burning rate
– Leads to optimum power density configurations

• Rocket motors with T/W > 400 appear possible

• Chemical quenching still important
• Viability of micro-rockets hinges on tradeoff 

between T/W and Isp.
• Experimental verification ongoing
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Future Work

• Simulation
– Incorporate radiation boundary condition
– Incorporate surface chemistry
– Investigate different fuels

• Experiments
– Measure δr(H) in micro-burner
– Construct parallel plate flow reactor
– Replace external optics with optical fiber system
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